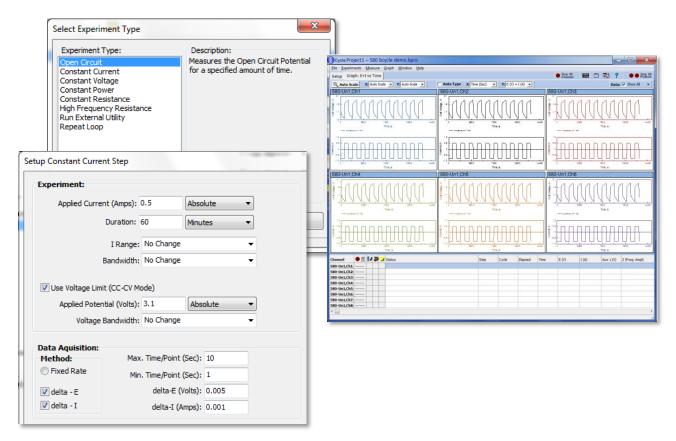


©Cycle™ Software for

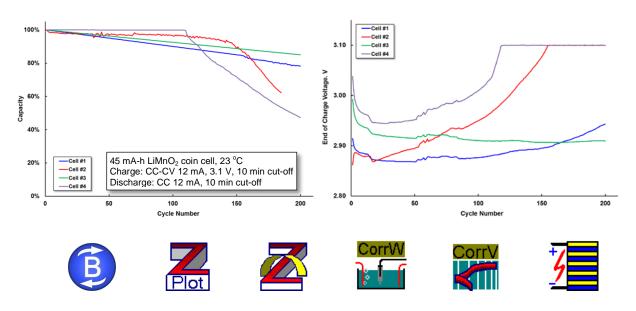
580 BATTERY TEST SYSTEM

BCycleTM is the dedicated control and measurement software for Scribner's *580 Battery Test System*. BCycle provides all of the necessary functions and features to program and perform battery and capacitor test routines and record test data. Created by the developers of ZPlot[®], ZView[®], CorrWare[®] and FuelCell[®], BCycle is powerful, flexible, and easy-to-use software that operates on Microsoft Windows[®] XP and 7 platforms.


BCycle is used to create, edit and execute test procedures. Complex test procedures are easily implement using flexible built-in experiments with multiple termination criteria

- Built-in experiments OCV, CC, CC-CV, CV, CP, Repeat Loop, Run External Utility
- Multiple step types ranging from simple charge/discharge cycling to complex load profiles
- Control modes constant current (CC), voltage (CV), or power (CP)
- Global max and min alarm V and I for safety
- Set limits of current, voltage, power or resistance that when met will automatically switch the control mode, e.g. CC to CV
- Up to 18 end conditions per step based on V_{cell}, V_{ref}, I, P, Q, E, dV/dt, dV_{ref}/dt, dI/dt
- Data acquisition rate based on fixed time or rate of change dV/dt, dI/dt with min and max time between points
- Comment fields available for each step as well as the overall procedure
- View entire step parameters on one screen
- Insert, delete or change step order
- Cut, copy and paste experiment to save time
- Fixed or auto current range selection global or stepspecific
- For each channel, the status, step/cycle and live data are displayed
- Real-time graphs of user-selected channels and parameters

Terminate this step if the following condition occurs:					
Voltage		-			
E <	V (Volts):	0			
 ▼E>	V (Volts):	3.15			
Eref <	V (Volts):	0			
Eref >	V (Volts):	5			
dE/dt <	dV (Volts):	0.002	dt (Sec):	10	
dE/dt >	dV (Volts):	0.005	dt (Sec):	10	
dE_Ref/dt <	dV (Volts):	0.002	dt (Sec):	10	
dE_Ref/dt >	dV (Volts):	0.005	dt (Sec):	10	
Current					
▽ I <	A (Amps):	0.005			
□ I >	A (Amps):	1			
dI/dt <	dI (Amps):	0.002	dt (Sec):	10	
	dI (Amps):	0.005	dt (Sec):	10	
Power					
P <	P (Watts):	0			
P >	P (Watts):	5			
Charge					
□ Q <	Charge(Ah):	0			
 ♥ Q >	Charge(Ah):	3			
Energy					
Wh <	Energy(Wh):	0			
	Energy(Wh):	2			


Default:		
Use Alarm I>	I (Amps):	1
Use Alarm I<	I (Amps):	-1
Use Alarm E>	E (Volts):	10
Use Alarm E<	E (Volts):	-2

BCycle Data Analysis Software

BCycle Analysis software is used to process active or archived data. Available data parameters include time-based or cycle-based values – V, I, V_{final} , I_{final} , V_{max} , V_{min} , I_{max} , I_{min} ; Absolute and Change in Capacity, Energy, Power, Efficiency and Resistance.

ZPlot, ZView, CorrWare and FuelCell are registered trademarks of Scribner Associates, Inc.

